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Abstract— Aspects of the thing are described by their many 

features. To get good performance, the right features must be 
specifically tailored for each visual tracking application. In this 
letter, we suggest combining deep and handmade features into a 
hybrid cascade filter to maximize their respective advantages. In 
order to improve localization accuracy and robustness, we 
combine the deep representation with manually created features 
and construct a hybrid cascade structure with several 
observation models. To further reduce the computational cost, a 
coarse-to-fine searching approach is employed. Comprehensive 
test outcomes on a pair of reference datasets demonstrate that 
the suggested approach outperforms the most advanced trackers. 

Index Terms—Deep features, hybrid cascade filter, handcrafted 
features, visual tracking. 

 

I. INTRODUCTION 

ISUAL tracking is a basic research topic in the field 
of computer vision and has numerous applications such 

as video surveillance, visual guidance, and human-computer 
interaction. It is mainly focused on estimating the states of an 
object in a video, given only its initial bounding box. This task 
is difficult, primarily because that the training data available for 
learning the object appearance model online is limited. Existing 
methods rely on rich feature representations to address this 
fundamental challenge [1], [2]. Consequently, feature extraction 
plays an important role in a tracker. Using proper features can 
dramatically improve the tracking performance. 

At present, the features used in visual tracking are divided 
into two categories: handcrafted features and deep features. 
Handcrafted features have long been employed for tracking task 
[3], [4], [5], which mainly include gray level, Color Names 
(CN) and Histogram of Oriented Gradients (HOG), etc. They are 
easy to calculate and explain, and contain rich low-level visual 
information. Recently, the focus has shifted to more powerful 

 

deep features, such as CNN features [6]–[8]. CNN features 
consist of the outputs from all different convolutional layers. 
The outputs in the earlier layers (earlier CNN features) retain 
fine-grained spatial details, while the ones in the latter layers 
(latter CNN features) encode high-level semantic information 
which is invariant to complex appearance changes and clutter. 
However, their disadvantage is also obvious. CNN generally 
trades spatial resolution and computational cost for increased 
high-level invariance to appearance changes, hampering ac- 
curate localization. Therefore, many trackers complement the 
deep representation with shallow features have been proposed 
[6]–[11]. 

Considering that the outputs of convolutional layers in dif- 
ferent levels can complement each other, Ma et al. [6], Li 
et al. [7] and Danelljan et al. [8] made full use of features 
from different layers through a variety of fusion strategies to 
achieve precise localization, which was a further step in un- 
derstanding of the layered architecture of deep network. Zhang 
et al. [9] first presented the multi-task correlation filter (MCF) 
that exploited interdependencies among different CNN features 
to learn correlation filters jointly, and then combined it with 
a particle filter to effectively overcome large-scale variation. 
Sun et al. proposed the DRT method [10] to jointly model the 
discrimination and reliability information using handcrafted and 
deep features. In [11], Dai et al. applied two kinds of correlation 
filter models. One exploited ensembles of handcrafted and deep 
features to determine the optimal position. The other worked 
on multi-scale handcrafted features to estimate the optimal 
scale. 

It can be found that for some targets, e.g., small-size ones, 
even earlier CNN features could not capture the useful spatial 
information while handcrafted features could. In fact, trackers 
using handcrafted features can still provide competitive results, 
even better than many deep trackers on standard benchmarks [2]. 
Furthermore, many trackers which complement the deep repre- 
sentation with low-level activations or handcrafted features are 
focused on improving localization accuracy, but their robustness 
are not ideal. This raises the question of how to optimally fuse 
handcrafted features and deep features to achieve both accuracy 
and robustness. 

From the above analysis, we propose a hybrid cascade filter 
(HCF) with complementary features for visual tracking. The 
main points are as follows: 

1) propose an HCF to fuse handcrafted features and latter 
CNN features using multiple observation models (ob- 
servers) to achieve better robustness; 

2) use a coarse-to-fine searching strategy to effectively re- 
duce the computational cost. 

Extensive experimental results demonstrate that the proposed 
method performs better on two benchmark datasets. 
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Fig. 1.    Pipeline of the proposed algorithm. Red dots denote the particles with high confidence, while blue ones denote low confidence. 
 

II. PROPOSED                     ALGORITHM 

Cascade filter builds an efficient cascade structure using multi- 
ple observers to obtain a more robust model for visual tracking. 
It is also due to such structure that different features can be 
coupled tightly. However, tracking through the conventional 
cascade structure is like exhaustively searching for uniformly 
distributed particles over the whole state space. It can be found 
that cascade particle filter [12] has solved this problem, but it is 
not suitable for visual tracking because of its fine search at each 
stage. Consequently, in order to fuse complementary features, 
we propose the HCF which combines the merits of cascade filter 
and cascade particle filter. 

An overview (Fig. 1) of the proposed algorithm is as follows: 
1) For a given image, we crop the search window centered at 

the estimated position from previous frame. 
2) HCF has 3-stage cascade structure, and at each stage we 

use proper features to establish discriminative observer. 
Observer 1 that captures the category information of the 
target for rough localization is established based on latter 
CNN features. Observer 2 that focuses on correcting the 
results from previous stage is established based on CN 
features. Observer 3 that possesses more spatial details 
for accurate localization is established based on HOG 
features. 

3) Three confidence outputs are generated by Observer 1, Ob- 
server 2 and Observer 3, respectively. Each observer will 
make more accurate judgment based on the confidence 
output from previous stage to improve robustness. 

4) We search the multi-stage confidence outputs to infer the 
target in a coarse-to-fine manner. 

5) The current frame prediction is used to update Observer 2 
and Observer 3 respectively. 

 

 
 

Fig. 2.    Illustration of HCF. 

 

Assuming observations are conditionally independent, we have 

m 

p(yt|xt) = p(y1 ,t,..., ym,t|xt) = p(yk,t|xt). (1) 
k=1 

Here, multiple observers p(yk,t xt) are cascaded. HCF can 
update the particle weight by p(yk,t xt) at each stage. 

As shown in Fig. 2, HCF has 3 stages, and each stage 
includes two steps: prediction and update. At the kth stage, 

we have already obtained a weighted particle set Pk−1,t = 
(i) 
k−1,t , ω

(i) 
k−1,t }

Nk−1  from the (k-1)th stage, where Nk−1 is the 

A. HCF 
number of particles. 

Prediction: when k = 2, directly obtain {x(i) , 1/Nk}
Nk  , 

The proposed HCF is based on Bayesian sequential impor- k,t i=1 
where x

(i) ← x(i) ,  s.t. ω(i) = 0; when k = 3, take the 
tance sampling, where a finite set of weighted particles is used k,t k−1,t k−1,t 

to recursively approximate the posterior distribution of state 
variables. Let xt and yt = (y1 , t,..., ym,t) denote the state 
variable of the object at time t and its observations respectively. 

posterior distribution from previous stage as the proposal distri- 

bution sampling particles, that is, resample the particle set Pk−1,t 

to obtain {x(i) , 1/Nk}
Nk . In order to avoid the loss of diversity 
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of particle set, Gaussian diffusion is added in the resampling 
stage. 

Update: when observation yk,t is available, the weight of x
(i) 

TABLE I 
MODEL ANALYSIS 

could be updated as 
  

 

ω(i) = p(yk,t|x(i) ), (2) 

when k = 1, define Rbackground and Robject as the regions of 
background and object, 

(i) 0   x(i) ∈ Rbackground 
 

Through the  above  two  steps,  the  particle  set  Pk,t = 
(i) (i) Nk 

{xk,t, ωk,t}i=1 is obtained. Such process is repeated for 3 stages 

to obtain the posterior probability p(xt|y1:t) ∼ {x(i) , ω(i)}N3   . 
In conclusion, the HCF proposed in this letter has two advan- 

tages: 
1) An efficient structure, which is built by multiple cascaded 

observers, improves the robustness of the tracker and fuses 
different features for better accuracy. 

2) A coarse-to-fine searching strategy is adopted combining 
the merits of cascade filter and cascade particle filter. 

 
B. Observers 

The observer used to measure the similarity between the 
particles and targets plays an important role in visual tracking. 
In this letter, we exploit latter CNN features and handcrafted 
features to establish the 3-stage observers respectively. 

1) Observer 1: Latter CNN features containing the semantic 

 
Fig. 3.    Precision and success plots. 

 

and the particle is measured by Bhattacharyya Distance dHOG. 
Observer 3 is shown in equation (4), where dCN is replaced by 
dHOG. The update of Observer 3 is similar to that of Observer 2. 

 
C. HCF Tracker 

Our method uses HCF as the tracking framework to effectively 
combine latter CNN features, CN features and HOG features. 
We present main steps of the proposed algorithm in Algorithm 1. 

 
 

Algorithm 1: Visual Tracking Based on HCF. 
information have significant advantages in inter-class classifica-    

tion. A CNN model [13] is used as the classifier, which focuses 
on separating the target from the background and roughly local- 

1: Input: At time t 1, the tracking result is xt   1. 
2: Prediction: At time t, crop the search region using 

izing the target. The output of the CNN classifier is a binary map. 
Each output pixel represents the category of the corresponding 

xt−1 as the center, and simulate x
(i) ∼ p(xt|xt−1), 

input region. A pixel whose corresponding input belongs to the 
target is set to 1, otherwise 0. The offline pre-training and online 
fine-tuning of the CNN classifier are referred to [13]. Since it is 
used for coarse searching, update is not necessary. Observer 1 
is modeled as a binary function based on the classifier’s output 

i = 1, 2 , . . .  , N1, where p(xt|xt−1) is the state 
transition distribution. Note that x

(i) should be 
diffused enough to cover the current search region. 

3: Weights update at stage 1: For i = 1, 2 , . . .  , N1, 
calculate ω(i) = p(y1,t|x(i)), and obtain the particle 

as shown in equation (3). The CNN classifier is effective as the 
1,t 

set {x(i) , ω(i)}N1   . 
1,t 

observer of coarse stage, which can fast eliminate most of the 
invalid candidates to achieve the purpose of speeding up. 

2) Observer 2: CN features are computationally efficient, 
and possess a certain amount of photometric invariance while 
maintaining high discriminative power. We use CN features to 
model Observer 2 similar to [14], which focuses on correcting 

4: Coarse search: remove the particles with ω(i) = 0 to 

obtain the particle set x
(i), 1/N2 

N2 . Note that the 
particle number is reduced greatly from N1 to N2. 

5: Weights update at stage 2: For i = 1, 2 , . . .  , N2, 
calculate ω(i) = p(y2,t|x(i)), and obtain the particle 

the results of coarse localization from previous stage. For any 
2,t 

set {x(i) , ω(i)}N2   . 
2,t 

particle, the similarity of CN templates between the target and 2,t 6: 2,t i=1 

the particle is measured by Bhattacharyya Distance dCN [14]. 

 

Resample + Gaussian diffusion: simulate 
(i) N2 (i) (i) N2 

αj ∼ {ω   } and replace {x , ω    } with 
   2   

 

 
{x , 1/N3} ; simulate x ∼ g(x3,t|x ), 

2,t 2,t 
2πσ2 2σ2 

i = 1, 2 , . . .  , N3, where g is a 0-mean Gaussian. Note 
that the particle number is reduced from N2 to N3. 

where σ2 is the scaling factor. Finally, Observer 2 should be 7: Weights update at stage 3: For i = 1, 2 , . . .  , N3, 

updated, that is, the target template is replaced by a weighted 
combination of the current frame prediction and the old template. 

calculate 
(i) 
3,t 

p(y3,t|x
(i) 

) 
.
 

g(x(i) |x(i) ) 
  

3) Observer 3: HOG features capture edge or gradient struc- 
tural information that is characteristic of local shape. We use 
HOG features to model Observer 3 for accurate localization. For 
any particle, the similarity of HOG templates between the target 

8: In the particle set   x
(i) , ω(i)  

N3   , select the particle 
with maximum weight as the final tracking result. 

  9: Output: the tracking result xt.  

2,t 3,t 

p(y 

Observer 2 is modeled as 

. (3) 

, (4) 

ω = 
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Fig. 4.    Qualitative evaluation on 6 challenging sequences (from left to right and top to down are MotorRolling, Skating2-1, Matrix, Ironman, Human9 and Board, 
respectively). 

 

 

 
III. EXPERIMENTAL RESULTS 

Our tracker is implemented in MATLAB using MaConvNet 
on a computer with an Intel (R) core (TM) 3.19 GHz CPU and a 
GeForce GTX Titan X GPU. The numbers of particles adopted in 
each stage are 3000, 400, and 100, respectively. We evaluate our 
method on two benchmark datasets: OTB-50 [15] and OTB-100 
[16]. For these benchmarks, we employ the one-pass evaluation 
(OPE) and two metrics: precision and success plots. Area under 
curve (AUC) and precision score at 20 pixels threshold (PS) are 
used as quantitative analysis indicators. 

 
A. Model Analysis 

In our tracker, we propose an HCF to exploit interdepen- 
dencies among different features (CNN, CN and HOG). With 
the same experimental settings, we have five different trackers 
including HCF-HC, HCF-VGGNet, HCF-ResNet, StdCF and 
Ours. Here, HCF-HC is HCF using the handcrafted features (CN, 
HOG and Haar-like), HCF-VGGNet is HCF using the features 
extracted on convolutional layers conv3-4, conv4-4, and conv5-4 
of the VGGNet, HCF-ResNet is HCF using the convolutional 
feature maps from the second, third and fourth convolutional 
blocks in ResNet-50, and StdCF is our tracker using standard 
cascade filter instead of HCF. 

Table I shows that both our selected features and HCF can 
improve the tracking performance. First, combining latter CNN 
features with handcrafted features can obtain better perfor- 
mance. Compared with HCF-HC, our tracker achieves much 
better performance with about 10.7% and 12% improvement 
with AUC metric on the OTB-50 and OTB-100 datasets. Com- 
pared with HCF-VGGNet / HCF-ResNet, which both use CNN 
features extracted from multiple layers, our tracker achieves 
about 2.6%/1.3% and 2.8%/1.9% improvement on the OTB-50 
and OTB-100 datasets. Second, HCF can improve the track- 
ing performance. Compared with StdCF, which has the same 
observers as ours, our tracker achieves about 9.2% and 9.9% 
improvement on the OTB-50 and OTB-100 datasets. 

 
B. Quantitative Evaluation 

We compare our method with 9 state-of-the-art trackers in- 
cluding TADT [7], ATOM [17], GradNet [18], LDES [19], 

TABLE II 
SPEED ANALYSIS 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

VITAL [20], DaSiamRPN [21], Siamtri [22], MCPF [9] and 
CCOT [8]. Fig. 3 shows precision and success plots over all 100 
sequences on the OTB-100 dataset using OPE. In the legend, we 
report the AUC score and PS for each tracker. In the precision 
and success plots, the proposed tracker achieves the AUC score 
of 67.8% and PS of 91.7%. Among the compared trackers, our 
method shows comparable results to VITAL, and compared with 
CCOT, the performance gain is 0.7% and 2.2% in terms of AUC 
and PS, respectively. In Table II, we summarize the speeds of 
top-ranked trackers on OTB-100. Our method runs at the speed 
with 20FPS, which is faster than VITAL and CCOT. Overall, 
our tracker performs well against the state-of-the-art methods. 

 
C. Qualitative Evaluation 

Fig. 4 shows some tracking results of the high-performance 
trackers: GradNet, MCPF, LDES, ATOM and our method on 
6 challenging sequences. In the proposed algorithm, the visual 
representations with CNN, CN and HOG features are effective. 
Our features contain both category-level semantics and spatial 
details, which account for appearance changes caused by de- 
formation, rotation, illumination variation and background clut- 
ter (MotorRolling, Skating2-1, Matrix, Ironman, Human9, and 
Board). And for the most challenging MotorRolling sequence, 
none of the high-performance methods could track well whereas 
our method achieves the AUC score of 70.1%. 

 
IV. CONCLUSION 

This letter concurrently uses hand-crafted features with spatial 
details and deep features with semantics for visual tracking. In 
order to fuse these features using numerous observers and achieve 
high accuracy and resilience, the suggested tracker constructs a 
hybrid cascade structure. To further minimize computing cost, it 
can search for the target using a coarse-to-fine search strategy. 
Our algorithm's performance is demonstrated by experimental 
findings on two benchmark datasets, which compare it to the most 
advanced tracking algorithms available. 
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